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Abstract Interfacial gravity–capillary plane solitary waves, driven by the gravitational force in the presence of
interfacial tension in a two-layer deep-water potential flow, bifurcate in the form of wavepackets with a non-zero
carrier wavenumber at which the phase speed is minimized. A stability property for the interfacial gravity–capillary
plane solitary waves is presented within the framework of the full Euler equations: according to a linear stability
analysis based on the perturbation method, such waves are unstable under weak and long-wave disturbances in the
transverse direction to the dominant wave propagation. An instability criterion is verified that the total mechanical
energy of the solitary waves is a decreasing function of the solitary wavespeed, owing to the fact that the speed
of the bifurcating solitary wavepackets is less than the minimum of the phase speed. This result is consistent with
an earlier study on the transverse instability of the longitudinally stable interfacial gravity–capillary solitary waves
from the Benjamin model equation for weakly nonlinear long interfacial elevations (Kim and Akylas, J Fluid Mech
557:237–256, 2006). The analysis is also applicable to other interfacial gravity–capillary solitary waves that may
bifurcate below the minimum of the phase speed, regardless of any restrictions on fluid depths in two-layer potential
flows.

Keywords Dispersive fluid wave systems · Euler equations · Solitary waves · Three-dimensional flow ·
Total mechanical energy

1 Introduction

We consider two immiscible fluid layers, in which the lighter layer with a constant fluid density ρ2 is laid over the
heavier one with ρ1 (ρ1 > ρ2). One of the layers of a finite thickness h is located on the top or on the bottom of the
fluid system, bounded by a flat horizontal rigid wall. The depth of the other layer is much greater than h or possibly
infinite. It is assumed that the boundary friction, if any, is negligible, so that the flow is irrotational.

In this physical setting, a line of studies has been developed on internal stationary waves moving along the
interface between two fluid layers, beginning with T. B. Benjamin’s interpretation of the dispersion relation. He
predicted the existence of solitary waves in the small-amplitude and long-wave limit in the presence of interfacial

B. Kim (B)
Centre de Mathématiques et de Leurs Applications, École Normale Supérieure de Cachan, CNRS UMR 8536,
61 Avenue du Président Wilson, 94235 Cachan Cedex, France
e-mail: boguk.kim@cmla.ens-cachan.fr

123



326 B. Kim

tension [1]. Internal stationary waves driven only by the gravitational force, not considering interfacial tension, are
described in his earlier work [2].

The generation mechanism of gravity–capillary solitary waves has been identified as bifurcation in the form of
wavepackets with a specific carrier wavenumber at which the linear phase speed is minimized [3–5]. At the carrier
wavenumber, the component of the group velocity in the direction of phase propagation is equal to the phase speed:
for plane wavepackets, in particular, the group velocity is the same as the phase speed. The envelope of wavepackets
for the primary harmonic is governed by the nonlinear Schrödinger equation when the spectral bandwidth is narrow
enough so as to be comparable to the small-wave-amplitude scale in the order of magnitude. Such a bifurcation
scenario is now commonly accepted for either surface or interfacial solitary waves in potential flow systems. In the
presence of surface or interfacial tension, together with the gravitational acceleration, the bifurcation point is found
at a nonzero wavenumber.

The steady profiles of surface gravity–capillary solitary-wave solutions were computed from the full Euler equa-
tions in [6,7] earlier than the discovery of the above generation mechanism of gravity–capillary solitary waves.
For the interfacial counterparts of a two-layer potential flow in finite depth, a numerical study was performed later
involving the full Euler equations [8,9]. The weakly nonlinear long-wave version from the Benjamin model equa-
tion for interfacial gravity–capillary solitary waves was done by using numerical continuation in [10], where the
steady model equation is parameterized by a speed-related parameter ranging from 0 to 1. The stability properties
of such gravity–capillary solitary waves under disturbances along the same direction of the solitary-wave propaga-
tion, referred to as ‘longitudinal stability’, were throughly investigated for the surface solitary waves and for the
interfacial ones, in [11] and [12] respectively, by Calvo and Akylas.

In contrast to the longitudinal stability, ‘transverse stability’ properties for the longitudinally stable gravity–
capillary solitary waves under disturbances moving in the perpendicular horizontal direction from the solitary-wave
propagation were studied later (see [13] for the use of the same terminology). For interfacial gravity–capillary
waves, long-wave transverse dispersion was verified to be the well-known Kadomtsev–Petviashvili-I (KP-I) type
in the context of the two-dimensional Benjamin (2-DB) model equation in [14]. In it, long-wave weak disturbances
are assumed to propagate in arbitrary oblique directions, which can be transformed into perturbations only in the
transverse direction to the solitary wave propagation but parallel to the fluid interface. And then, the long-wave
transverse instability of surface gravity–capillary solitary waves was verified for the full Euler equations in [15] by
the authors of [14].

The key idea in deriving the long-wave transverse instability criterion applied for both the weakly nonlinear
long-wave interfacial solitary waves and the surface gravity–capillary solitary waves, demonstrated in [14,15], is
essentially the same. The instability growth rate at the initial stage when long-wave transverse disturbances start to
develop is expressed in terms of the underlying solitary-wave solutions. From the associated nonlinear eigenvalue
problem, the eigenvalue and the associated eigenfunction correspond to the instability growth rate and the specific
transverse perturbation, respectively. A useful sufficient condition for long-wave transverse disturbances to grow
exponentially is that the total mechanical energy E of the solitary waves should be a decreasing function of the
wavespeed V . In fact,
∂E
∂V

< 0 (1.1)

should be always valid for the gravity–capillary solitary waves under consideration near the bifurcation point if
they bifurcate below the minimum of the linear phase speed. It is because their total mechanical energy increases
but their wavespeed decreases as they are farther away below from the bifurcation point.

From the previous results for gravity–capillary solitary waves, it seems to be evident that interfacial gravity–
capillary solitary waves share many stability properties with surface gravity–capillary solitary waves. Moreover,
the existence of interfacial gravity–capillary solitary waves may not necessarily require extra assumptions, for
instance, such as weak nonlinearity or long-waveness that are assumed for the Benjamin model equation. Accord-
ingly, the main objective of the present study is to obtain a generalized result for the long-wave transverse instabil-
ity of interfacial gravity–capillary solitary waves within the framework of the full Euler equations, not only from
model equations, in a consistent manner that was employed for the long-wave transverse instability of the surface
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Fig. 1 The linear dispersion relation of the full Euler equations for interfacial gravity–capillary waves when the finite depth layer is
located on the bottom of a two-fluid potential flow system (2.9) (solid) and its long-wave approximation (2.11) (dotted) are compared
by plotting wavenumber κ versus phase speed c = ω/κ . The two nondimensional parameters R = ρ2/ρ1 and H = h

√
(ρ1g) /T

are defined. (a) corresponds to the dispersion relation for monochromatic waves that propagate on the interface of an infinitely deep
m-xylene layer on the 4.6 cm-deep water for R = 0.7 and H = 10: the critical wavenumbers are found in the region where the long-
wave approximation fails so that the critical phase speeds at the minimum points of the phase speeds differ significantly each other. (b)
represents the dispersion relation for the infinitely deep benzene on the 3.5 cm-deep water for R = 0.86 and H = 10: there is a huge
gap between the two critical wavenumbers at the bifurcation points. The values of the physical parameters are found in [1,12]. H � 1
implies the weak interfacial tension regime

gravity–capillary solitary waves in [15]. In other words, we aim to make similar long-wave transverse instability
statements in other parameter regimes, as well, especially where interfacial tension is weak.

In general, the long-waveness assumption states that the principal components among the Fourier modes of waves
are achieved only when the wavenumber is close to zero. According to the original consideration by Benjamin [1],
the long-waveness assumption is justified by the condition

W =
√

T

δρgh2 � 1, (1.2)

where T is the interfacial tension coefficient, δρ = ρ1 − ρ2 is the density difference, and g is the gravitational
acceleration. This condition (1.2) has been taken for granted by some later authors writing on interfacial gravity–
capillary solitary waves in deep water [12,14]. If the wavelength scale is nondimensionalized by

√
T/ (ρ1g) instead

of h, however, then it turns out to be equivalent to using

1 − R = 1 − ρ2

ρ1
= δρ

ρ1
� 1 (1.3)

in order to validate the same long-waveness assumption (see Appendix for the reasoning). This close-density
condition (1.3) is assumed in [16] to derive the two-dimensional Benjamin model equation for weakly nonlinear
and long interfacial elevation. As is shown in Fig. 1, there are apparent discrepancies between the original disper-
sion relation and its long-wave limit, either in the critical wavenumbers or in the minimum phase speeds, for a few
selected physical parameters that represent weak interfacial tension regimes.

According to other related studies on transverse instability analysis for solitary waves that are found either on the
surface or on the interface of fluids, with or without the surface or the interfacial tension [13–15,17,18], transverse
instability occurs if the same criterion (1.1) is satisfied. This argument on transverse instability should be valid
regardless of the configuration of a finite-depth layer whether it is on the top or on the bottom of the whole fluid
system.

A fascinating aspect of transverse instability for gravity–capillary solitary waves is that it is considered as a sign
of the occurrence of interesting dimension-breaking phenomena in three-dimensional surface or interfacial wave
dynamics. It is thought that the long-wave transverse instability of two-dimensional (also referred to as plane or
line) gravity–capillary solitary waves is closely related to the existence of lump-type solitary waves. Referred to
as ‘gravity–capillary lumps’, as recently studied in [14,19–24], they follow the same bifurcation scenario as that
of the two-dimensional counterpart in the same physical condition described in this study. In [14], preceded by
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[19–22] for the surface wave counterparts, the numerical profiles for the steady solutions of interfacial gravity–cap-
illary lumps in deep water were computed from the elliptic–elliptic Benney–Roskes–Davey–Stewartson (BRDS)
equations that were extended in [25,26] by including the surface tension effect in three dimensions. The associated
unsteady numerical results in the context of the full Euler equations for interfacial gravity–capillary waves have
been obtained in [27,28].

It was shown that the lumps are dynamically generated from the plane solitary waves induced by weak and long-
wave transverse disturbances for interfacial gravity–capillary solitary waves in [14]. For surface gravity–capillary
solitary waves, Akers and Milewski demonstrated similar results from their model equation in [23]. A rigorous
eigenvalue problem for the stability of depression gravity–capillary lumps was studied in [24] in the context of the
fifth-order KP model equation for surface gravity–capillary waves, concluding that depression gravity–capillary
lumps beyond a certain critical threshold in their amplitude or steepness are stable under three dimensional weak
disturbances. A consistent stability statement of steady surface gravity–capillary lumps was mentioned in [23] based
on the energy plots with respect to the wavespeed for steady solitary-wave lump solutions. Their solid justifications
on the three-dimensional stability of the gravity–capillary lumps give mutual credence to the long-wave transverse
instability of gravity–capillary solitary waves that have been investigated through all of the prior works as well as
the current study.

2 Formulation

2.1 Nondimensionalization

Let us nondimensionalize the wavelength scale by
√

T/ (ρ1g) and the time scale by
{
T/
(
ρ1g3

)}1/4
. It follows that

the potential functions in both fluid layers are nondimensionalized by
{
T 3/

(
ρ3

1 g
)}1/4

. This nondimensionalization
allows a long-wave approximation to be possible if the close-density condition (1.3) is satisfied. In many other
instances, the length scale can be nondimensionalized by h (with the same time scale by

{
T/
(
ρ1g3

)}1/4
), for which

the potential functions are to be scaled by h2
(
ρ1g3/T

)1/4
. For any choices, the resulting nondimensional equations

should be congruent up to an appropriate scaling.
The nondimensional Euler equations for a two-layer potential flow, when the finite-depth layer of the thickness

h is on the bottom of the fluid system, read as follows:

∇2φ1 = 0 for −H < z < η (x, y, t), (2.1a)

∇2φ2 = 0 for η (x, y, t) < z < +∞, (2.1b)

with the boundary and far field conditions

φ1,z = 0 at z = −H, (2.2a)

φ1,x → 0 as x → ±∞, (2.2b)

φ1,y → 0 as y → ±∞, (2.2c)

φ2,z → 0 as z → +∞, (2.2d)

φ2,x → 0 as x → ±∞, (2.2e)

φ2,y → 0 as y → ±∞, (2.2f)

where

∇2 ≡ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 (2.3)

for φ1(x, y, z, t) and φ2(x, y, z, t). As customary, x and y are the horizontal variables, z is the vertical variable
in the direction of the gravitational acceleration, and t is the time variable. The nondimensional parameter H , the
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depth of the finite-depth fluid, is defined by

H = h

√
ρ1g

T
. (2.4)

This nondimensional variable H measures the ratio between the gravitational force exerting on the heavier fluid
and the strength of the interfacial tension.

When the finite-depth layer is on the top of the fluid system, on the other hand, the nondimensional system of
equations is given by

∇2φ1 = 0 for −∞ < z < η (x, y, t), (2.5a)

∇2φ2 = 0 for η (x, y, t) < z < H, (2.5b)

with the boundary and far field conditions

φ1,z → 0 as z → −∞, (2.6a)

φ1,x → 0 as x → ±∞, (2.6b)

φ1,y → 0 as y → ±∞, (2.6c)

φ2,z = 0 at z = H, (2.6d)

φ2,x → 0 as x → ±∞, (2.6e)

φ2,y → 0 as y → ±∞, (2.6f)

For either physical configuration, the interfacial conditions on the fluid interface z = η (x, y, t) are the same.
The two kinematic boundary conditions are nondimensionalized to be

ηt + φ1,xηx + φ1,yηy = φ1,z, (2.7a)

ηt + φ2,xηx + φ2,yηy = φ2,z . (2.7b)

The nondimensional dynamic boundary condition is written by

φ1,t + 1

2

(
φ2

1,x + φ2
1,y + φ2

1,z

)
− R

{
φ2,t + 1

2

(
φ2

2,x + φ2
2,y + φ2

2,z

)}

+ (1 − R) η −

⎧⎪⎨
⎪⎩
⎛
⎝ ηx√

1 + η2
x + η2

y

⎞
⎠

x

+
⎛
⎝ ηy√

1 + η2
x + η2

y

⎞
⎠

y

⎫⎪⎬
⎪⎭=0. (2.8)

Note that the interfacial tension coefficient is normalized with our choice of the length and time scales (the lower
alphabetical and Greek subscripts represent partial differentiations with respect to the subscript variables).

2.2 Dispersion relation

In dispersive wave systems, the linear dynamics of infinitesimally small amplitude waves is completely determined
by the dispersion relation. In addition, the dispersion relation contains information on the bifurcation scenario of
solitary waves.

When the finite-depth layer is on the bottom of the fluid system, the dispersion relation corresponding to (2.1),
(2.2a), (2.7), and (2.8) is

ω2 = (1 − R) κ + κ3

R + coth (κH)
, (2.9)

where

κ =
√

k2 + l2, (2.10)
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assuming that monochromatic waves along the fluid interface take the form of ei(kx+ly−ωt). In the long-wave limit
as κ → 0, (2.9) is approximated by

ω ∼ √
(1 − R) Hκ

{
1 − 1

2
RHκ + 1

2

(
1

1 − R
− H2

3
+ 3R2 H2

4

)
κ2
}
. (2.11)

When the finite-depth layer is on the top of the fluid system, on the other hand, the dispersion relation corre-
sponding to (2.5)–(2.8) becomes

ω2 = (1 − R) κ + κ3

1 + Rcoth (κH)
, (2.12)

and the associated long-wave approximation is

ω ∼
√
(1 − R) H

R
κ

{
1 − H

2R
κ + 1

2

(
1

1 − R
− H2

3
+ 3H2

4R2

)
κ2
}
. (2.13)

In the following sections, most discussions are presented assuming that the finite-depth layer is on the bottom of
the fluid system. For the other physical configuration, only minor modifications are needed to reach an equivalent
set of results.

2.3 Linearized system for transverse perturbations to interfacial gravity–capillary plane solitary
waves in deep water

A perturbation method was used to verify the long-wave transverse instability criterion for surface gravity solitary
waves in [17], for surface gravity–capillary solitary waves in [15], and for interfacial gravity solitary waves in [13].
In this section, a method essentially identical to the previous ones is first attempted in the framework of a two-layer
potential flow system in deep water with the presence of both the gravitational acceleration and the interfacial
tension.

Suppose that

η̄(ξ) = η̄(x − V t) (2.14)

is a plane solitary-wave solution for the interfacial elevation moving in the x-direction only. The corresponding
solitary-wave solutions for the two potential functions are denoted by

φ̄1(ξ, z) = φ̄1(x − V t, z), (2.15a)

φ̄2(ξ, z) = φ̄2(x − V t, z), (2.15b)

in the lower and upper layers, respectively (the solitary-wave solutions are denoted by the variables with the bar on
the top). The transversely perturbed solutions in the y-direction are

η(x, y, t) = η̄(ξ)+ η̂(ξ)eiµy+λt , (2.16a)

φ1(x, y, z, t) = φ̄1(ξ, z)+ φ̂1(ξ, z)eiµy+λt , (2.16b)

φ2(x, y, z, t) = φ̄2(ξ, z)+ φ̂2(ξ, z)eiµy+λt , (2.16c)

where λ is defined by the instability growth rate. Here it is assumed that∣∣∣φ̂1

∣∣∣ � ∣∣φ̄1
∣∣, ∣∣∣φ̂2

∣∣∣ � ∣∣φ̄2
∣∣, ∣∣η̂∣∣ � |η̄|. (2.17)

The linearized system of equations for the perturbed waves then becomes

∇̄2φ̂1 = µ2φ̂1 for −H < z < η̄, (2.18a)

∇̄2φ̂2 = µ2φ̂2 for η̄ < z < +∞, (2.18b)
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where

∇̄2 ≡ ∂2

∂ξ2 + ∂2

∂z2 , (2.19)

with the bottom boundary condition

φ̂1,z = 0 at z = −H, (2.20)

and the far field conditions

φ̂2,z → 0 as z → +∞, (2.21a)

φ̂1,ξ → 0 as ξ → ±∞, (2.21b)

φ̂2,ξ → 0 as ξ → ±∞. (2.21c)

The kinematic and dynamic conditions at the interface z = η̄(ξ) are

L1

(
φ̂1, φ̂2, η̂

)
= −λη̂, (2.22a)

L2

(
φ̂1, φ̂2, η̂

)
= −λη̂, (2.22b)

L3

(
φ̂1, φ̂2, η̂

)
= −λ

(
φ̂1 − Rφ̂2

)
− µ2 η̂√

1 + η̄2
ξ

, (2.22c)

where

L1 ≡ −
√

1 + η̄2
ξ

∂

∂ 	n1
φ̂1 +

{
d

dξ
φ̄1,ξ + (−V + φ̄1,ξ

) d

dξ

}
η̂, (2.23a)

L2 ≡
√

1 + η̄2
ξ

∂

∂ 	n2
φ̂2 +

{
d

dξ
φ̄2,ξ + (−V + φ̄2,ξ

) d

dξ

}
η̂, (2.23b)

L3 ≡ (−V + φ̄1,ξ
) d

dξ
φ̂1 − R

(−V + φ̄2,ξ
) d

dξ
φ̂2 +

√
1 + η̄2

ξ

×
{(−V + φ̄1,ξ

) ∂

∂ 	n1
φ̄1,ξ + R

(−V + φ̄2,ξ
) ∂

∂ 	n2
φ̄2,ξ

}
η̂ + (1 − R) η̂ −

⎧⎪⎨
⎪⎩

η̂ξ(
1 + η̄2

ξ

)3/2

⎫⎪⎬
⎪⎭
ξ

. (2.23c)

As usual, d
dξ is the directional derivative in the ξ -direction along the fluid interface z = η̄(ξ), defined by

d

dξ
≡ ∂

∂ξ
+ η̄ξ

∂

∂z
. (2.24)

The normal vectors at the interface z = η̄(ξ) are defined by

	n1 ≡ 1√
1 + η̄2

ξ

(−η̄ξ , 1
) ≡ −	n2. (2.25)

Hence, the associated normal derivatives are given by

∂

∂ 	n1
≡ − η̄ξ√

1 + η̄2
ξ

∂

∂ξ
+ 1√

1 + η̄2
ξ

∂

∂z
≡ − ∂

∂ 	n2
. (2.26)

Here 	n1 and 	n2 are the outward normal vectors on the fluid interface z = η̄ (ξ) with respect to the lower and the
upper layers, respectively. For the above derivation, we use the fact that

∇̄2φ̄1 = 0 for −H < z < η̄, (2.27a)

∇̄2φ̄2 = 0 for η̄ < z < +∞. (2.27b)
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2.4 Long-wave perturbation expansion

Under the assumption of long-wave disturbances

|µ| � 1, (2.28)

the perturbed solutions are expanded in the small parameter µ as follows:

φ̂1 = φ̂
(0)
1 + µφ̂

(1)
1 + µ2φ̂

(2)
1 + · · · , (2.29a)

φ̂2 = φ̂
(0)
2 + µφ̂

(1)
2 + µ2φ̂

(2)
2 + · · · , (2.29b)

η̂ = η̂(0) + µη̂(1) + µ2η̂(2) + · · · , (2.29c)

and also for the instability growth rate λ by

λ = µλ(1) + µ2λ(2) + · · · . (2.30)

Substituting these perturbation expansions (2.29) and (2.30) in the linearized system of equations (2.16), (2.18),
and (2.20)–(2.23), we obtain the leading-order equations for φ̂(0)1 , φ̂(0)2 , and η̂(0) as follows:

∇̄2φ̂
(0)
1 = 0 for −H < z < η̄, (2.31)

∇̄2φ̂
(0)
2 = 0 for η̄ < z < +∞, (2.32)

with the boundary condition

φ̂
(0)
1,z = 0 at z = −H, (2.33)

and the far field conditions

φ̂
(0)
2,z → 0 as z → +∞, (2.34)

φ̂
(0)
1,ξ → 0 as ξ → ±∞, (2.35)

φ̂
(0)
2,ξ → 0 as ξ → ±∞. (2.36)

The kinematic and dynamic conditions at the interface z = η̄(ξ) are given by

L1

(
φ̂
(0)
1 , φ̂

(0)
2 , η̂(0)

)
= 0, L2

(
φ̂
(0)
1 , φ̂

(0)
2 , η̂(0)

)
= 0, L3

(
φ̂
(0)
1 , φ̂

(0)
2 , η̂(0)

)
= 0. (2.37a,b,c)

Now, the leading-order perturbation solutions are obtained by

φ̂
(0)
1 = φ̄1,ξ , φ̂

(0)
2 = φ̄2,ξ , η̂

(0) = η̄ξ (2.38)

(up to a common constant multiple) by differentiating the original system of equations for the solitary-wave solutions
with respect to ξ along the interface z = η̄(ξ).

For the next order O(µ), we have

∇̄2φ̂
(1)
1 = 0 for −H < z < η̄, (2.39a)

∇̄2φ̂
(1)
2 = 0 for η̄ < z < +∞, (2.39b)

with

φ̂
(1)
1,z = 0 at z = −H, (2.40a)

φ̂
(1)
2,z → 0 as z → +∞, (2.40b)

φ̂
(1)
1,ξ → 0 as ξ → ±∞, (2.40c)

φ̂
(1)
2,ξ → 0 as ξ → ±∞, (2.40d)
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and with the kinematic and dynamic conditions at the interface z = η̄(ξ) given by

L1

(
φ̂
(1)
1 , φ̂

(1)
2 , η̂(1)

)
= −λ(1)η̂(0) = −λ(1)η̄ξ , (2.41a)

L2

(
φ̂
(1)
1 , φ̂

(1)
2 , η̂(1)

)
= −λ(1)η̂(0) = −λ(1)η̄ξ , (2.41b)

L3

(
φ̂
(1)
1 , φ̂

(1)
2 , η̂(1)

)
= −λ(1)

(
φ̂
(0)
1 − Rφ̂(0)2

)
= −λ(1) (φ̄1,ξ − Rφ̄2,ξ

)
. (2.41c)

And then, the second-order perturbations are solved to give

φ̂
(1)
1 = −λ(1)φ̄1,V , φ̂

(1)
2 = −λ(1)φ̄2,V , η̂(1) = −λ(1)η̄V (2.42)

by differentiating with respect to the solitary wavespeed V to the original system of equations for the plane soli-
tary-wave solutions.

For the next-order perturbations of O(µ2), we have

∇̄2φ̂
(2)
1 = φ̂

(0)
1 = φ̄1,ξ for −H < z < η̄, (2.43a)

∇̄2φ̂
(2)
2 = φ̂

(0)
2 = φ̄2,ξ for η̄ < z < +∞, (2.43b)

with

φ̂
(2)
1,z = 0 at z = −H, (2.44a)

φ̂
(2)
1,ξ → 0 as ξ → ±∞, (2.44b)

φ̂
(2)
2,ξ → 0 as ξ → ±∞, (2.44c)

φ̂
(2)
2,z → 0 as z → +∞, (2.44d)

with the kinematic and dynamic conditions at the interface z = η̄(ξ) given by

L1

(
φ̂
(2)
1 , φ̂

(2)
2 , η̂(2)

)
=−λ(1)η̂(1)−λ(2)η̂(0)=λ(1)2η̄V −λ(2)η̄ξ , (2.45a)

L2

(
φ̂
(2)
1 , φ̂

(2)
2 , η̂(2)

)
=−λ(1)η̂(1)−λ(2)η̂(0)=λ(1)2η̄V −λ(2)η̄ξ , (2.45b)

L3

(
φ̂
(2)
1 , φ̂

(2)
2 , η̂(2)

)
=−λ(1)

(
φ̂
(1)
1 −Rφ̂(1)2

)
−λ(2)

(
φ̂
(0)
1 −Rφ̂(0)2

)
− η̂(0)√

1 + η̄2
ξ

=λ(1)2(φ̄1,V −Rφ̄2,V
)−λ(2)(φ̄1,ξ−Rφ̄2,ξ

)− η̄ξ√
1 + η̄2

ξ

. (2.45c)

2.5 Solvability condition for the perturbations of O(µ2)

In order to have solutions that do not blow up for the perturbations φ̂(2)1 , φ̂(2)2 , and η̂(2) from (2.43)–(2.45) as
ξ → ±∞, it is required that they solve the following adjoint boundary-value problem:

∇̄2ψ1 = 0 for −H < z < η̄, (2.46a)

∇̄2ψ2 = 0 for η̄ < z < +∞, (2.46b)

with the boundary condition

ψ1,z = 0 at z = −H, (2.47)

with the far-field conditions

ψ2,z → 0 as z → +∞, (2.48a)

ψ1,ξ → 0 as ξ → ±∞, (2.48b)

ψ2,ξ → 0 as ξ → ±∞, (2.48c)
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and with the kinematic and dynamic conditions at the interface z = η̄(ξ)

L+
1 (ψ1, ψ2, ζ ) = 0, (2.49a)

L+
2 (ψ1, ψ2, ζ ) = 0, (2.49b)

L+
3 (ψ1, ψ2, ζ ) = 0, (2.49c)

where

L+
1 ≡ −

√
1 + η̄2

ξ

∂

∂ 	n1
ψ1 −

{
d

dξ
φ̄1,ξ + (−V + φ̄1,ξ

) d

dξ

}
ζ, (2.50a)

L+
2 ≡

√
1 + η̄2

ξ

∂

∂ 	n2
ψ2 + R

{
d

dξ
φ̄2,ξ + (−V + φ̄2,ξ

) d

dξ

}
ζ, (2.50b)

L+
3 ≡ − (−V + φ̄1,ξ

) d

dξ
ψ1 − (−V + φ̄2,ξ

) d

dξ
ψ2

+
√

1 + η̄2
ξ

{(−V + φ̄1,ξ
) ∂

∂ 	n1
φ̄1,ξ + R

(−V + φ̄2,ξ
) ∂

∂ 	n2
φ̄2,ξ

}
ζ + (1 − R) ζ −

⎧⎪⎪⎨
⎪⎪⎩

ζξ(
1 + η̄2

ξ

) 3
2

⎫⎪⎪⎬
⎪⎪⎭
ξ

.

(2.50c)

The above adjoint boundary-value problem is solved by

ψ1 = φ̄1,ξ , ψ2 = −Rφ̄2,ξ , ζ = −η̄ξ (2.51)

(up to any constant multiple of the above).
Applying integration by parts along the fluid interface z = η(ξ) and Green’s second identity on both upper and

lower fluid layers (the orientations of the boundary integrals are opposite in the upper and lower layers), the lead-
ing-order terms appear in O(µ2) from (2.29), (2.30), (2.37a,b,c), (2.38), (2.41), (2.42), (2.45), (2.50), and (2.51),
such that

0 =
+∞∫

−∞
λ(1)

2 {(
φ̄1,ξ − Rφ̄2,ξ

)
η̄V − (

φ̄1,V − Rφ̄2,V
)
η̄ξ
}∣∣∣

z=η̄ dξ

+
+∞∫

−∞

⎧⎪⎨
⎪⎩
⎛
⎜⎝

η̄∫
−H

φ̄2
1,ξdz + R

+∞∫
η̄

φ̄2
2,ξdz

⎞
⎟⎠+ η̄2

ξ√
1 + η̄2

ξ

⎫⎪⎬
⎪⎭dξ. (2.52)

2.6 Instability criterion in terms of the total mechanical energy of solitary-wave solutions

As in [15], the total mechanical energy of a solitary wave E is defined by

E = K + G + T , (2.53)

where

K = 1

2

+∞∫
−∞

⎛
⎜⎝

η̄∫
−H

∣∣∣∇̄φ̄2
1

∣∣∣2 dz + R

+∞∫
η̄

∣∣∣∇̄φ̄2
2

∣∣∣2 dz

⎞
⎟⎠ dξ = −1

2
V

+∞∫
−∞

{(
φ̄1 − Rφ̄2

)
η̄ξ
}∣∣

z=η̄ dξ (2.54)

denotes the kinetic energy for ∇̄ = (∂/∂ξ, ∂/∂z),

G = 1 − R

2

+∞∫
−∞

η̄2 dξ (2.55)

the gravitational potential energy, and
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T =
+∞∫

−∞

(√
1 + η̄2

ξ − 1
)

dξ (2.56)

the potential energy due to the interfacial tension. This definition for the total mechanical energy of interfacial
gravity–capillary solitary waves was also adopted in [29,30], except for the way of nondimensionalization.

Then, it is shown that

∂E
∂V

= V

+∞∫
−∞

{(
φ̄1,ξ − Rφ̄2,ξ

)
η̄V − (

φ̄1,V − Rφ̄2,V
)
η̄ξ
}∣∣

z=η̄ dξ (2.57)

by using integration by parts along the fluid interface and Green’s first identity on both upper and lower fluid layers.
Hence, the leading-order coefficient λ(1) for the instability growth rate in µ is expressed by

λ(1)
2 = −

∫ +∞
−∞

{(∫ η̄
−H φ̄

2
1,ξdz + R

∫ +∞
η̄

φ̄2
2,ξdz

)
+ η̄2

ξ√
1+η̄2

ξ

}
dξ

1
V
∂E
∂V

. (2.58)

Therefore, if the total mechanical energy of the solitary waves is a decreasing function of V , then λ(1)
2

becomes
positive. This implies that a positive instability growth rate can exist for each real value of µ, so that the solitary
waves are unstable under any long-wave transverse disturbances. Note that the final expression (2.58) for the lead-
ing-order coefficient of the instability growth rate is not affected by any constant multiple factor that may be applied
to the perturbed solutions.

3 Estimate of the long-wave transverse instability growth rate for the interfacial gravity–capillary
solitary waves in deep water

3.1 Weakly nonlinear solitary wavepacket solutions in the long-wave limit

Under the close-density condition

1 − R = O(ε) and H = O(1), (3.1)

the derivation of the weakly nonlinear long-wave Benjamin model equation

1

V0
ηt + ηx + 3

4H

(
η2
)

x
− RH

2
H{ηxx } − 1

2 (1 − R)
ηxxx = 0 (3.2)

is provided in the Appendix. It is known that the steady Benjamin equation of a canonical form

η∗ − η∗2 − 2γH∗ {η∗
ξ∗
}

− η∗
ξ∗ξ∗ = 0 (3.3)

allows solitary-wave solutions for 0 < γ < 1 (see [10]). Applying a simple scaling

η(ξ) = 1

β
η∗(ξ∗), ξ∗ = αξ (3.4)

for

α = (1 − R) RH

2γ
, β = − 6γ 2

(1 − R) R2 H3 , (3.5)

we have that η(ξ) = η(x − V t) satisfies (3.2) where

γ 2 = (1 − R) R2 H2

8
· V0

V0 − V
, V0 = √

(1 − R) H . (3.6)
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0 < γ < 1 imposes on (3.6) the condition

V <

{
1 − (1 − R) R2 H2

8

}
V0. (3.7)

A remarkable concurrence is found that the right-hand side of (3.7) is the minimum phase speed from the long-wave
dispersion relation (2.11), which is attained for a pair of nonzero critical wavenumbers

k0 = ± (1 − R) RH

2
. (3.8)

The amplitudes of the solitary-wave solutions of (3.2) become arbitrarily small if the two densities are close enough
in their values or if the nondimensional depth is sufficiently shallow.

From (3.3), a weakly nonlinear solitary long-wavepacket bifurcates in the form of

η∗(ξ∗) = ± 2√
3
ε sech

(
εξ∗) cos ξ∗ + 4

3
ε2sech2 (εξ∗) cos2ξ∗ + O(ε3) (3.9)

for γ = 1 − ε2/2 (see [14]). The corresponding solitary wavepacket for (3.9) is given by

η (ξ) ∼ ∓ (1 − R) R2 H3

3
√

3
ε sech (εk0ξ) cos (k0ξ) · · · . (3.10)

The sign of the leading-order expression for the solitary wavepacket is reversed when (3.3) is transformed into (3.2)
via (3.4)–(3.6), so that the elevation solitary wavepacket (3.9) becomes the depression one (3.10), which should be
stable under longitudinal disturbances according to [12].

From (B.2) and (B.3), the two potential functions are estimated as follows:

φ̄1,ξ (ξ, z) =
√

1 − R

H
η̄(ξ)+ O(ε2) ∼ ∓ (1 − R)

3
2 R2 H

5
2

3
√

3
ε sech (εk0ξ) cos (k0ξ) (3.11)

for −H < z < η̄(ξ), and

φ̄2,ξ (ξ, z) = −V0F−1
{
|k| e−kzF {η(ξ)} (k)

}
+ O(ε2)

∼ ± (1 − R)
5
2 R3 H

9
2

6
√

3
ε sech (εk0ξ) cos (k0ξ) e−k0z (3.12)

for η̄(ξ) < z < +∞.
Substituting (3.10), (3.11), and (3.12) in (2.53)–(2.56), we obtain

K ∼ ε

27
(1 − R)2 R3 H5

{
1 + (1 − R) R2 H2

2

}
, (3.13a)

G ∼ ε

27
(1 − R)2 R3 H5, (3.13b)

T ∼ ε

108
(1 − R)3 R5 H7, (3.13c)

E ∼ ε

27
(1 − R)2 R3 H5

{
2 + 3 (1 − R) R2 H2

4

}
. (3.13d)

Accordingly, (2.57) becomes

EV

V
∼ − 8

27
ε−1 RH2 8 + 3 (1 − R) R2 H2

8 − (1 − R) R2 H2 < 0 (3.14)

for fixed R and H . Hence, the associated positive eigenvalue is estimated from (2.58) by

λ(1) ∼ ε
√

2 (Vmin − V ) V0. (3.15)

The instability growth rate in terms of the order of |Vmin − V | is consistent with the result for the surface gravity–
capillary solitary waves in [15].
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We now conclude that an instability occurs for the weakly nonlinear solitary long-wavepackets for arbitrarily
small ε > 0 under long-wave disturbances in the transverse direction to the wave propagation.

In comparison with the instability growth rate that was computed from the Benjamin model equation, Sect. 4 in
[14] is reviewed (η (ξ) in there corresponds to η∗ (ξ∗) in this section). In terms of η∗ (ξ∗), the instability growth
rate in the leading order is expressed by√√√√ 4

∫ +∞
−∞ η∗2dξ∗

3
∫ +∞
−∞ η∗2dξ∗ − γ ∂

∂γ

∫ +∞
−∞ η∗2dξ∗ ∼ 2ε (3.16)

for the same γ = 1 − ε2/2 as that used in this section. The scaling

T̂ = α3V0

2 (1 − R)
t, ξ∗ = αξ, Ẑ = α2

√
1 − R

y (3.17)

is needed for Eq. 4.2 in [14] in order to obtain the associated two-dimensional weakly nonlinear long-wave model
equation (A.28) for the nondimensionalization used here. By multiplying (3.16) by

α3V0

2 (1 − R)
·
√

1 − R

α2 = αV0

2
√

1 − R
, (3.18)

we observe that the leading-order instability growth rate derived from the Benjamin model equation matches (3.15).

3.2 Fully nonlinear interfacial gravity–capillary solitary waves

With or without the constraint of the long-waveness assumption, it is expected to obtain fully nonlinear interfacial
gravity–capillary plane solitary waves by varying 0 < R < 1 and V < Vmin continuously from the weakly nonlinear
solitary wavepacket solutions. In this study, it is highlighted that the total mechanical energy of the solitary waves
decreases with respect to the solitary wavespeed near the bifurcation points. Solitary-wave solutions are expected
to be highly nonlinear as they are farther below from the bifurcation points in the bifurcation diagram. Hence, the
long-wave transverse instability should occur as well for the associated fully nonlinear solitary waves within certain
ranges when the solitary wavespeed is close to the minimum wavespeed and when the density ratio is close to the
unity.

4 Discusssion

The reason why long-wave disturbances are examined for the effect of transverse instability can be explained as
follows. For transversely unperturbed plane solitary waves, only the zeroth wave mode in the transverse direction
is available. Although the instability bandwidth in the transverse direction is not precisely computed, it is certain
that nearby modes, which are among long-wave or side-band modes, to the zeroth mode in the transverse direction
should be excited or stabilized at the initial stage when disturbances are applied. Therefore, it is justified that most
efforts are made in this study to verify (1.1) as well as to obtain the analytical explicit expression of the leading-
order instability growth rate for long-wave transverse perturbations in terms of the interfacial gravity–capillary
solitary-wave solutions.

The criterion (1.1) is applicable only for solitary waves that can be parameterized by the wavespeed, not for
isolated solitary waves that feature discrete wavespeeds. The existence of isolated solitary waves can be explained in
terms of a homoclinic orbit that passes through the origin when the equations for steady solitary-wave solutions are
expressed in an equivalent spatial dynamical system. For instance, isolated interfacial solitary waves were computed
under the rotational-flow assumption in [31]. See [32] for general statements for the bifurcation of such isolated
solitary waves. In this study, however, any stability issues regarding to isolated solitary waves are not addressed.
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The analysis provided here has nothing to do with the shape of solitary wavepackets, elevation or depression.
It is straightforward to extend the same analysis for a potential flow of two finite depth layers as in [9]. It will be
interesting to see whether the result in this study, where the finite-depth layer is at the bottom of the fluid system,
qualitatively agrees with those of the gravity–capillary surface solitary waves discussed in [3,6–8,16] in the limit of
R → 0 in view of the dispersion relation, the type of the longitudinally stable solitary waves (elevation or depres-
sion), the long-wave transverse instability, and the order of the instability growth rate in terms of the wavespeed
difference from the critical value.

Often, it is known that two branches of solitary waves emanate from the bifurcation point. See [9,10,12,14]
for the result on the computation of two branches of interfacial gravity–capillary solitary waves. The counterparts
for surface gravity–capillary solitary waves are described in [7,8,11]. In those works, one branch is stable and the
other is unstable under longitudinal disturbances. For the physical setting where the finite-depth fluid layer is on
top of the fluid system, it is verified in [12] in the framework of the full Euler equations that the elevation interfacial
gravity–capillary solitary waves, of which the center peak is concave, are the stable ones, whereas the depressed
ones with the convex center peak are unstable under small longitudinal perturbations. Even when the finite-depth
fluid layer is located at the bottom of the fluid system, the stability result should be identical, except that the actual
shape of the solitary waves in the latter configuration are upside-down with respect to the former ones (see Appendix
for a detailed analysis).

Actually, the criteria for the longitudinal and transverse stability of solitary waves seem to be related. In principle,
the exchange of the longitudinal stability of solitary waves should occur whenever the continuously parameterized
solutions to the nonlinear system that governs the solitary waves pass through a turning point in the bifurcation
diagram. For gravity solitary waves, in particular, it was confirmed that the criterion (1.1) itself determines the
longitudinal stability by showing that the exchange of longitudinal stability occurs at every stationary point of the
total mechanical energy of gravity solitary waves (see [33,34] for the result on surface gravity solitary waves, and
[18] for interfacial gravity solitary waves). Note that (1.1) plays a role as a sufficient condition for the transverse
instability of the interfacial gravity–capillary solitary waves as in [13,15,17]. Indeed, we may expect to enhance the
analytical result for the long-wave transverse instability criterion for the interfacial gravity–capillary solitary waves
by performing a detailed higher-order analysis near the far field of the solitary waves as the associated results for
the surface gravity solitary waves in [13,18].

It is useful to define the impulse and circulation of interfacial gravity–capillary solitary waves in a fashion simi-
lar to the counterparts of surface water waves [35] because those quantities are closely related with the transverse
instability criterion. The impulse of the interfacial gravity–capillary solitary waves in deep water is defined by

I =
+∞∫

−∞
dξ

⎛
⎜⎝

η̄∫
−H

φ̄1,ξdz + R

+∞∫
η̄

φ̄2,ξdz

⎞
⎟⎠

=
⎛
⎜⎝

η̄∫
−H

φ̄1dz + R

+∞∫
η̄

φ̄2dz

⎞
⎟⎠
∣∣∣∣∣∣∣
+∞

ξ=−∞

−
+∞∫

−∞

{(
φ̄1 − Rφ̄2

)
η̄ξ
}∣∣

z=η̄ dξ

= HC + G. (4.1)

In the above expression,

C = φ̄1
∣∣+∞
ξ=−∞ (4.2)

is the circulation of the lower-layer potential function in the finite-depth layer. The quantity

R

+∞∫
η̄

φ̄2
∣∣+∞
ξ=−∞ dz (4.3)
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vanishes because so does φ̄2 as either z or |ξ | goes to infinity. As a matter of fact,

G = −
+∞∫

−∞

{(
φ̄1 − Rφ̄2

)
η̄ξ
}∣∣

z=η̄ dξ (4.4)

satisfies

∂G

∂V
= 1

V

∂E
∂V

, (4.5)

which can be shown by using integration by parts. As indicated in [15], (1.1) is sufficient for the long-wave trans-
verse instability of solitary waves whether the circulation of solitary waves is nontrivial or not. For circulation-free
solitary waves, the impulse change rate of solitary waves with respect to the wavespeed, which was used for a
transverse instability criterion for the solitary water waves in [33] and used for the longitudinal stability criterion
for the solitary water waves in [34], is equal to ∂E/∂V . In general, the circulation of solitary waves does not nec-
essarily vanish when a fluid layer is bounded by a wall because the fluid is allowed to slip on the boundary in the
potential-flow assumption.

For a future study, rigorous mathematical proofs for the transverse instability of gravity–capillary solitary waves
and the existence of gravity–capillary lumps, either for interfacial and surface wave problem, especially in the weak
interfacial or surface-tension regime, can be made; there are recent related studies in the strong surface-tension
regime [36,37] although the type of gravity–capillary solitary waves they have studied are different from what is
discussed in this study.

Appendix

This appendix presents, under the close-density condition, a derivation of the weakly nonlinear long-wave model
equation for interfacial gravity–capillary waves in two-layer potential flows in deep water.

A. Two-dimensional Benjamin model equation (2-DB)

Under the close-density condition (1.3), the weakly nonlinear model equation for the interfacial gravity–capillary
waves in a two-layer potential flow in deep water has been derived in [16]. Here, an equivalent derivation is pre-
sented, assuming that the finite-depth layer is on the bottom of the fluid system. Thus, the derivation is based on
(2.1), (2.2a), (2.7)–(2.9), and (2.11), as discussed in Sect. 2.

Let us assume that (3.1) is satisfied and that the characteristic wave length is measured by ε ∼ κ . Assuming that
the y-directional component of interfacial waves varies more slowly than the x-directional one, say l ∼ √

εk, we
may approximate both (2.9) and (2.11) by

ω = ±√(1−R) Hk

{
1 − 1

2
RH |k| + 1

2 (1 − R)
k2 + l2

2k2 + O(ε2)

}
. (A.1)

If we consider the uni-directional part of the waves, only the positive part from (A.1) can be taken for k > 0. Then,
the linear terms of the long-wave model equation are completely recovered by the relations

ω → i
∂

∂t
, k → −i

∂

∂x
, l → −i

∂

∂y
, |k| → ∂

∂x
H {·}, (A.2)

where H {·} is the Hilbert transformation defined by

H
{

f (x ′)
}
(x) = 1

π

+∞∫
−∞

f (x ′)
x − x ′ dx ′. (A.3)
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In [12,14], the Hilbert transformation is defined as the negative sign of (A.3), but (A.3) seems to be natural as the
convolution of f (x) with 1/(πx). The Fourier transformation of 1/x is given by

F
{

1

x

}
(k) = 1

2π

+∞∫
−∞

e−ikx

x
dx = −i

sign (k)

2
(A.4)

in the sense of a principal-value integral.
From the long-wave approximation, the speed of the fast moving wave component is V0 = √

(1 − R) H ∼ √
ε

and the rest of the wave components is at most O(ε
3
2 ). Regarding that the interfacial elevation is much smaller than

the nondimensional finite depth H of the lower fluid layer and that the upper layer potential function varies in the
vertical direction to a comparable degree to the x-directional variance but is weaker than the lower-layer potential
of the finite depth, the following scaling is naturally chosen:

ξ ′ = ε(x − V0t), y′ = ε
3
2 y, z′ = z (lower), Z ′ = εz (upper), (A.5a)

t ′ = ε2V0t, η′ = ε−1η, φ′
1 = V −1

0 φ1, φ′
2 = (εV0)

−1 φ2. (A.5b)

By doing so, we make the nondimensional physical quantities, expressed by the new variables with the prime
symbol, to be O(1) when they are observed in the frame moving with the speed V0 in the positive x-direction.

In terms of the new variables, the Euler equations are written by

ε2φ1,ξ ′ξ ′ + ε3φ1,y′ y′ + φ1,z′z′ = 0, −H < z′ < εη′(ξ ′, y′, t ′), (A.6a)

φ2,ξ ′ξ ′ + φ2,Z ′ Z ′ = O(ε), ε2η′(ξ ′, y′, t ′) < Z ′ < +∞, (A.6b)

and on the interface Z ′ = εz′ = ε2η′(ξ ′, y′, t ′):

ε2
(
−η′

ξ ′ + εη′
t ′ + εφ′

1,ξ ′η′
ξ ′
)

− φ′
1,z′ = O(ε4), (A.7a)

−η′
ξ ′ + εη′

t ′ + φ′
2,ξ ′η′

ξ ′ − ε2φ′
2,Z ′ = O(ε3), (A.7b)

εV 2
0

{− (
φ′

1,ξ ′ − εRφ′
2,ξ ′
)+ ε

(
φ′

1,t ′ − εRφ′
2,t ′
)}

+ 1

2
V 2

0

{(
ε2φ′2

1,ξ ′ + ε3φ′2
1,y′ + φ′2

1,z

)
− ε4 R

(
φ′2

2,ξ ′ + εφ′2
2,y′ + φ′2

2,Z ′
)}

+ ε (1 − R) η′ − ε3η′
ξ ′ξ ′ = O(ε4), (A.7c)

with

φ′
1,z′ = 0 at z′ = −H, (A.8a)

φ′
1,ξ ′ → 0 as ξ ′ → ±∞, (A.8b)

φ′
1,y′ → 0 as y′ → ±∞, (A.8c)

φ′
2,Z ′ → 0 as Z ′ → +∞, (A.8d)

φ′
2,ξ ′ → 0 as ξ ′ → ±∞, (A.8e)

φ′
2,y′ → 0 as y′ → ±∞. (A.8f)

The right-hand sides in (A.6) and (A.7) involve the terms with the y-derivatives and the next order remainders from
the interfacial tension terms.

Expanding φ′
1 in ε by

φ′
1 = φ′(0)

1 + εφ′(1)
1 + ε2φ′(2)

1 + ε3φ′(3)
1 + · · · , (A.9)

(A.6a) is solved in successive order up to O(ε2) with the bottom boundary condition (A.8a) to obtain

φ′
1 = θ ′(0) + εθ ′(1) + ε2

{
θ ′(2) − 1

2
(z′ + H)2θ ′(0)

ξ ′ξ ′

}

+ ε3
{
θ ′(3) − 1

2
(z′ + H)2

(
θ ′(1)
ξ ′ξ ′ + θ ′(0)

y′ y′
)}

+ O(ε4), (A.10)
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where θ ′(0), θ ′(1), θ ′(2), θ ′(3), . . . are independent of z, because

φ′(0)
1,z′z′ = 0, φ′(1)

1,z′z′ = 0, φ′(2)
1,z′z′ = −φ′(0)

1,ξ ′ξ ′ = −θ ′(0)
ξ ′ξ ′ , (A.11a)

φ′(3)
1,z′z′ = −φ′(1)

1,ξ ′ξ ′ − φ′(0)
1,y′ y′ = −θ ′(1)

ξ ′ξ ′ − θ ′(0)
y′ y′ (A.11b)

in −H < z′ < εη′, with

φ′(0)
1,z′ = φ′(1)

1,z′ = φ′(2)
1,z′ = φ′(3)

1,z′ = 0 on z′ = −H. (A.12)

The upper-layer potential φ2 is approximated in terms of the inverse Fourier transformation with respect to ξ ′

φ′
2

(
ξ ′, y′, Z ′, t ′

) =
+∞∫

−∞
F ′ {φ′

2
(
ξ ′, y′, Z ′, t ′

)}
(k′)eik′ξ ′−|k′|Z ′

dk′ + O(ε), (A.13)

where

F ′ { f (ξ ′)
}
(k′) = 1

2π

+∞∫
−∞

f (ξ ′)e−ik′ξ ′
dξ ′ (A.14)

for

k = εk′. (A.15)

Now, the Fourier transformation of (A.7b) with respect to ξ ′ is taken for Z ′ = ε2η′(ξ ′, y′, t ′) � 1 to yield

F ′
{
φ′

2,Z ′
∣∣∣

Z ′=ε2η′(ξ ′,y′,t ′)

}
(k′) = − ∣∣k′∣∣F ′ {φ′

2

∣∣
Z ′=ε2η′(ξ ′,y′,t ′)

}
(k′)

= −ik′F ′ {η′} (k′)+ O(ε), (A.16)

and thus,

F ′ {φ′
2

∣∣
Z ′=ε2η′(ξ ′,y′,t ′)

}
(k′) = i sign(k′)F ′ {η′} (k′)+ O(ε). (A.17)

It follows that

φ′
2

∣∣
Z ′=ε2η′(ξ ′,y′,t ′) = −

+∞∫
−∞

η′(s, y′, t ′)
ξ ′ − s

ds + O(ε)

= −H′ {η′ (ξ ′, y′, t ′
)}+ O(ε), (A.18)

where H′ is the Hilbert transformation with respect to ξ ′. Note that the sign in front of the Hilbert transformation
is negative (when the infinitely deep fluid layer is in the lower side, the negative sign does not appear in front of the
Hilbert transformation).
η′ and φ′

2 are expanded in ε as follows:

η′ = η′(0) + εη′(1) + ε2η′(2) + · · · , (A.19a)

φ′
2 = φ′(0)

2 + εφ′(1)
2 + ε2φ′(2)

2 + · · · , (A.19b)

so that

φ′(0)
2

∣∣∣
Z ′=ε2η′(ξ ′,y′,t ′)

= −H′ {η′(0) (ξ ′, y′, t ′
)}
. (A.20)

Let us substitute (A.10) and (A.19a) in (A.7c) and collect the leading-order terms to obtain

− V 2
0 θ

′(0)
ξ ′ + (1 − R) η′(0) = 0. (A.21)

Then, the following equivalent expression arises in the leading order of (A.7a):

− η′(0)
ξ ′ + Hθ ′(0)

ξ ′ξ ′ = 0. (A.22)
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The next-order terms of O(ε3) in (A.7a) read

− η′(1)
ξ ′ + η′(0)

t ′ + θ ′(0)
ξ ′ η′(0)

ξ ′ + η′(0)θ ′(0)
ξ ′ξ ′ + Hθ ′(1)

ξ ′ξ ′ + Hθ ′(0)
y′ y′ = 0, (A.23)

where the last three terms come from −φ′
1,z . Both θ ′(0)

ξ ′ and θ ′(0)
ξ ′ξ ′ are eliminated from (A.23) by using (A.21) or

(A.22), so that we have

− η′(1)
ξ ′ + η′(0)

t ′ + 2

H
η′(0)η′(0)

ξ ′ + Hθ ′(1)
ξ ′ξ ′ + Hθ ′(0)

y′ y′ = 0. (A.24)

Recalling that V 2
0 = (1 − R)H = O(ε), from (A.10), (A.19), and (A.20), correct up to O(ε3) in (A.7c), we have

− V 2
0 θ

′(1)
ξ ′ − RV 2

0 H′{η′(0)
ξ ′ } + V 2

0 θ
′(0)
t ′ + (1 − R) η′(1)+ 1

2
V 2

0 θ
′(0)
ξ ′

2 − εη′(0)
ξ ′ξ ′ = O(ε). (A.25)

By taking differentiation with respect to ξ ′, we collect the leading-order terms in (A.25) by the virtue of (3.1)
and (A.21) or (A.22) as follows:

− Hθ ′(1)
ξ ′ξ ′ − RHH′{η′(0)

ξ ′ξ ′ } + η′(0)
t ′ + η′(1)

ξ ′ + 1

H
η′(0)η′(0)

ξ ′ − ε

1 − R
η′(0)
ξ ′ξ ′ξ ′ = O(ε) (A.26)

since V 2
0 ∼ 1 − R ∼ O(ε). By adding (A.24) and (A.26) and then differentiating in ξ ′, both η′(1)

ξ ′ and θ ′(1)
ξ ′ξ ′ are

canceled out.
Finally, from (A.21) or (A.22) again, we end up with

η′(0)
t ′ξ ′ + 3

4H

(
η′(0))2

ξ ′ξ ′ − RH

2
H′{η′(0)

ξ ′ξ ′ξ ′ } − ε

2 (1 − R)
η′(0)
ξ ′ξ ′ξ ′ξ ′ + 1

2
η′(0)

y′ y′ = O(ε). (A.27)

And then, the following two-dimensional model equation,

1

V0
ηt x + ηxx + 3

4H

(
η2
)

xx
− RH

2
H{ηxxx } − 1

2 (1 − R)
ηxxxx + 1

2
ηyy = 0, (A.28)

is obtained by converting back to the original nondimensional variables through

∂

∂t ′
= ε−2

V0

(
∂

∂t
+ V0

∂

∂x

)
, (A.29a)

∂

∂ξ ′ = ε−1 ∂

∂x
, (A.29b)

∂

∂y′ = ε−
3
2
∂

∂y
, (A.29c)

H′ { f (εs)} (ξ ′) = H { f (s)} (x), (A.29d)

η′(0) = ε−1η + O(ε). (A.29e)

Without the dependence on y′, (A.28) is nothing but (3.2). This two-dimensional Benjamin equation, presented
as 2-DB with different nondimensionalization in [14], involves the KP-I type transverse dispersion to the one-
dimensional Benjamin (1-DB) equation.

Note that the coefficients of the linear terms agree with (A.1) and (A.2). The sign of the nonlinear coefficient
is positive in this configuration. However, for the latter configuration where the finite-depth layer is on top, the
sign of the coefficient of the nonlinear term should flip to be negative, without changing the magnitude. The signs
of the coefficients in front of the Hilbert transformation, which accounts for the gravity term, and the third-order
capillary term remain unchanged in either configuration. Therefore, the corresponding weakly nonlinear long-wave
one-dimensional model equation for the latter configuration is finally given by√

R

(1 − R) H
ηt + ηx − 3

4H

(
η2
)

x
− H

2R
H{ηxx } − 1

2 (1 − R)
ηxxx = 0. (A.30)

The associated two-dimensional model equation is obtained in the essentially same way as (A.28).
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B. Estimation of the two potential functions

Under the assumption that the values of the two densities are close to each other and that the y-directional variation
of the interfacial elevation is much more slowly varying than the x-directional one, the two potential functions are
expressed in terms of the weakly nonlinear interfacial elevation.

From (A.5), (A.10), (A.21), and (A.29),

θ ′(0)(ξ ′, y′, t ′) = 1

H

ξ ′∫
−∞

η′(0)(s′, y′, t ′)ds′, (B.1)

and thus,

φ1(x, y, z, t)=
√

1 − R

H

⎧⎨
⎩

x∫
−∞

η(s, y, t)ds− 1

2
(z + H)2 ηx (x, y, t)

⎫⎬
⎭+ O(ε) (B.2)

for −H < z < η(x, y, t). From (A.5), (A.13), and (A.17), for the upper-layer potential, we obtain that

φ2(x, y, z, t) = V0F−1
{

i sign(k)e−kzF {η (x, y, t)} (k)
}

+ O(ε2) (B.3)

for η(x, y, t) < z < +∞.
The expressions (B.2) and (B.3) support the statements on the circulation (4.2) and (4.3) in the Discussion.
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